
A Data Management Framework for Distributed Biomedical Research
Environments

Rajkumar Kettimuthu1,2, Robert Schuler3, David Keator4, Martin Feller1,2, Dingying Wei4, Michael Link1,2, Lee Liming1,2,
Joseph Ames4, Ann Chervenak3, Ian Foster1,2, Carl Kesselman3

1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
2Computation Institute, University of Chicago, Chicago, IL
3USC Information Sciences Institute, Marina Del Ray, CA

4University of California, Irvine, CA

*∗Abstract—Biomedical research increasingly depends on access
to and analysis of distributed medical and biomedical data. In
biomedical research, datasets are often collected at multiple
locations, as it is difficult to recruit required patient populations
at one location. The sensitive nature of these datasets leads to a
need for secure sharing methods that can work with distributed
databases and image archives. The efficient implementation of
such methods is complicated by the fact that the researchers who
need to access data are often behind firewalls that prohibit
inbound connections. This restriction, combined with large data
volumes and many small files, leads to significant data transfer
challenges. We present a data management framework suitable
for such distributed biomedical research environments and
describe its application in the context of FBIRN, a distributed
data-sharing system for medical researchers. The framework
includes security tools, catalogs for managing datasets, and a
secure data transfer service.

Keywords - Data management, Biomedical research,
Distributed computing

I. INTRODUCTION
Biomedical research increasingly depends on access to

and analysis of multiple, geographically distributed sources
of medical and biological data. Data must be stored,
processed and made easily available to different biomedical
participants: researchers, physicians and healthcare centers.

Healthcare applications impose several requirements
on computing infrastructure. The need to record, manage,
and use sensitive personal data leads to strict privacy
requirements. Healthcare systems must comply with
privacy laws, medical information standards, and
institutional review board restrictions. Encrypted
transmission and storage are not sufficient; automatic de-
identification or anonymization may be required to
guarantee privacy. Integrity verification is also important.

As health research moves towards personalized
medicine, it becomes increasingly difficult to recruit
cohorts of patients at a single location. Thus, data are often
collected at multiple locations. These data may consist of
both images (e.g., MRI scans) and clinical evaluations
(both structured and unstructured data). Because these data
are sensitive, most centers prefer to store them locally
rather than contribute them to central data warehouses.

*∗ Corresponding authors: Rajkumar Kettimuthu (kettimut@mcs.anl.gov) and
Robert Schuler (schuler@isi.edu)

Data are then shared with collaborators over well defined,
secure, and robust interfaces. Management of such
distributed databases and image archives is therefore
critically important in this domain.

Sites hosting individual data repositories are generally
behind institutional network firewalls over which data
repository operators may not have direct control. Firewall
configurations typically do not allow outside services to
request connections to servers inside the firewall except for
a small number of well-defined service addresses. In
addition, researchers and physicians who need to access
these distributed datasets are generally behind restrictive
network firewalls, which may not allow any inbound
connections at all.

The datasets are often large (terabytes) and may
contain a large numbers (millions) of small files. These
dataset characteristics, combined with strict firewall rules,
present significant challenges in transferring these datasets
over wide area networks reliably and efficiently.

We present here a data management framework that is
suitable for distributed biomedical research environments.
This framework includes security tools [1, 2, 3], catalogs
for managing data objects [4, 5], and a secure data transfer
service [6, 7, 8]. We evaluate this framework in the context
of Function BIRN (FBIRN) [9], a distributed data
repository that integrates fMRI, structural imaging, and
clinical data from multiple sites that the research
community uses to develop and test novel hypotheses.

The rest of the paper is as follows. In Section II, we
describe the FBIRN collaboration and its requirements for
secure, federated data publication and sharing. We present
the data management framework in Section III. In Section
IV, we evaluate our framework in the FBIRN environment.
We discuss related work in Section V and summarize our
work in Section VI.

II. FBIRN
The function BIRN (FBIRN) consortium comprises 10

sites across the United States focused on developing fMRI
tools and techniques for both federated data management
and multi-site image calibration and analysis in the context
of schizophrenia research [10]. Each FBIRN site collects
and stores both clinical and neuroimaging data and
associated metadata in local storage.

A. FBIRN Environment
The FBIRN environment demands a federated system

capable of providing robust access to data stored at any site.
Typical FBIRN usage suggests that this system must be
able to support up to eight concurrent downloads and three
concurrent uploads of image data to/from each site.
Original, raw, and analyzed image data sets vary
significantly in size. The original data from a single subject
session comprises ~1.0 GB and 2.9K files, depending on
scanning parameters. Normally, consortium sites download
multiple subjects/sessions in bulk. These downloads consist
of ~20 subjects over two scanning visits, for a total of ~42
GB and 129K files. Users require that datasets transfer with
a high success percentage and with verification for
consistency at both the source and destination. In addition,
FBIRN replicates datasets in the federation so they are
available if the originating site’s systems are offline.

In summary, FBIRN researchers want a dynamic,
robust system that abstracts the users from the underlying
complexity of the data federation, making it appear as
though all the data exists in a single location.

B. Data Requirements
In the previous sections, we discussed our general

observations from the biomedical sciences community and
a specific application that motivated our data management
framework. Here we discuss in detail the driving
requirements that shaped the architecture.

The system must provide to a specified set of project
participants access to data located in a set of federated
storage resources at several independent sites. Each site
contributes commodity hardware and networking resources
and limited systems administration resources. Failures at
other sites must not prevent users from accessing their own
local data, so long as the local resources are online.

The system must store a large number of relatively
small files. We anticipate each experiment will produce
over a million files ranging in size from hundreds of bytes
to several megabytes and will organize them hierarchically
in a relatively flat directory tree with degree typically under
five.

The system must store files in a manner that is
interoperable with other conventional systems. Often,
specialized software systems of this nature employ
proprietary storage mechanisms, which preclude access by
other services such as Network File System [11], Rsync
[12], and Secure Shell [13]. Though the system is intended
to be robust, in the event of failure, it should never prevent
access to locally owned data by keeping it in proprietary
storage.

The system must support security policies governing
user group management and data access controls including
create, read, write, and delete of files and directories. Users
can belong to one or more groups, and the system must
support multiple user- and group-based data access

permissions per file or directory. In addition, the system
must allow each storage resource to specify its own set of
data access permissions, thus allowing different
permissions for local users and users from other
organizations in the federation.

Typical workloads are shaped by the typical project
lifecycle, which progresses through several phases of
activity. In the data capture phase, data produced by the
instruments are initially stored. In the subsequent quality
assurance phase, a curator examines project data for
defects and abnormalities. Finally, the data access phase
commences, during which time users across the FBIRN
federation may read any data at local or remote sites.

The system must support multiple concurrent projects,
which may be at different phases in the project lifecycle. In
particular, the system must handle overlapping workloads
from both data capture and data access phases. We expect
the aggregate workload to consist of about a dozen clients
with ~75% readers and ~25% writers.

The workload during the data capture phase typically
consists of a small number of writers performing large bulk
writes to local storage. A client may write 2 GB or more in
tens of thousands of small files. Multiple clients writing to
a single dataset are not common. Typically, a single user is
responsible for creating a new dataset. Once a dataset is
written, it is seldom modified, except in the event of a
quality assurance failure, in which case the complete data
set is often retracted and republished. Thus, random
mutations of data are rare.

The workload during the data access phase typically
consists of several local and remote readers. Like the
writers in the data capture phase, the readers in the data
access phase also perform large bulk operations. We expect
that readers will download multiple datasets with over
100,000 small files and a total volume of over 40 GB. We
can expect that multiple readers may access the same
dataset at the same time, since the data access phase
follows data capture for a given project.

We favor reliable data transfer and sustained
throughput over latency. Applications tend to access data in
large bulk operations, as described, in the range of 2 GB to
40 GB, but in relatively infrequent, bursty patterns. Though
the system supports interactive clients, we anticipate mostly
batch clients. Also, given that administrative resources are
limited, reliable data transfer is favored over performance.

III. DATA MANAGEMENT ARCHITECTURE
We present here the data management framework,

including the basic design, the trust model, data access
control, group membership service, and file transfer
service.

A. Design Overview
The system consists of storage resources, file transfer

services, registry services, a credential repository, a group

membership service, and clients, as depicted in Figure 1.
System components are loosely coupled and can operate
independently and without shared state. By keeping the
system loosely coupled, we simplify maintenance, reduce
operations costs, and reduce the probability of system-wide
failure.

Figure 1: Data Management Architecture

To preserve interoperability with other systems, data
are stored conventionally in Linux file systems. Files are
organized hierarchically under project directories. At each
storage resource, a file transfer service is responsible for
providing secure remote access to the underlying file
system. The data objects at each storage system are
identified uniquely by protocol-specific URLs. Currently,
we support ftp, sshftp, and gsiftp protocol schemes [14].
The file transfer service supports storage, retrieval, third-
party transfer, delete, checksum generation, and checksum
validation for individual files and for bulk operations with
recursive directory traversal. Additionally, it supports
changing ownership, setting access controls, and getting
access control lists remotely. For the file transfer service,
we used the Globus GridFTP Server [8].

The locations of data objects at each storage site are
registered in registry catalogs that map those physical
locations to logical names. A logical name is a location-
independent (i.e., host-independent) name for an object. It
may be mapped to one or more instances of the object,
usually by mapping to one or more URLs. Though the
system supports individual file registration, the large
number of files in the system motivates us to register
logical name mappings to higher-level directories that serve
as data set collections. This approach reduces the
communication costs that would be incurred registering and
locating many small data objects, and reduces the amount
of metadata stored in registry services. Registry catalogs
may be installed as a centralized service, or co-located with
storage resources, or both. Each registry catalog generates a
compressed index of its collection of logical names and
updates a registry index service whenever its contents

change. The registry index is used to quickly redirect
clients to the appropriate registry catalog to answer queries
for logical names. Together, the registry catalogs and
registry index comprise the system’s registry services. For
the registry services, we used the Globus Replica Location
Service [15].

User applications can access the data management
services by using a C or Java API. We also provide several
client utilities for standalone operations. To retrieve data
from the system, clients first refresh a temporary user
credential, known as a proxy credential [16], from the
credential repository, which authenticates the client based
on username and password. The client then queries the
registry index, which directs the client to the appropriate
registry catalog that contains the location metadata for the
data object. The client then queries a registry catalog to
obtain a listing of one or more URLs to the data object.
Finally, the client uses the URL to retrieve the data object
using the file transfer service. For the credential repository,
we used the MyProxy credential management service [17].

B. Trust Model
Trust between system components is established by

use of Public Key Infrastructure (PKI) [18], which depends
on a chain of trust rooted by a Certificate Authority (CA).
A certificate that traces back to the issuing CA identifies
each system component and user. To establish trust
between components, the CA root certificate is installed on
each server and each service is issued a service or host
certificate, which must also be installed on the server. The
certificates enable cryptographically strong authentication
when any two components communicate. Additional
benefits of this trust model are its efficiency and
robustness. With the CA root certificate installed on each
server, components validate authenticity directly without
the need to communicate with a third-party security service
for every transaction. This structure reduces the amount of
network traffic produced by the system and allows for
continuous operation whether or not the central security
services are online.

For convenience and usability, the credential
repository stores user certificates. When performing a data
operation, the user provides his or her username and
password to the client, which securely communicates with
the credential repository to retrieve a temporary certificate
(known as a proxy certificate [16]). The proxy certificate is
valid for some duration up to a configurable upper limit,
typically up to 12 hours. For the duration of the proxy
lifetime, the client reuses the proxy certificate for all
communication with the system. Again, the trust model
enables efficiency and robustness by reducing unnecessary
system interactions to establish trust.

C. Access Control
The system relies on the underlying Linux file systems

to enforce data access control. We selected the ext3 Linux
file system [19] in part for its support of the POSIX
1003.1e draft specification [20] for extended access control
lists (extended ACLs). Using extended ACLs, users can
grant multiple read and write permissions for various users
and groups, unlike traditional UNIX file permissions that
are limited to granting permissions to a single user and a
single group. Though the standards body abandoned the
POSIX 1003.1e draft, numerous file systems and utilities
support it, thus allowing interoperability between our
system and third-party tools.

When the client connects with the file transfer service,
the file transfer service uses the proxy credential to
authenticate the user and maps her certificate-based identity
to her local user account recognized by the Linux file
system. The file transfer service then forks (i.e., spawns a
new process) and sets its user identity to her local user
account. From that point forward, the Linux file system is
able to enforce the extended ACLs on file transfer service
operations. This approach stands in contrast to the typical
approach to security taken by web applications where the
web application operates as a privileged user that has near
unlimited access to data and system resources. That
approach has the disadvantage that relatively new and
unproven custom code is used to enforce access control
restrictions in the web application. An attacker need only
find a way to compromise such a web application to gain
access to any and all data on the server. Our approach, on
the other hand, relies on kernel and file system
implementations, which have been vetted by a large
community of users.

D. Group Membership
To support user group based authorization, the system

relies on a group membership service. The group
membership service manages user and group membership
details. We implement the group membership service using
caBIG GridGrouper [21]. An authorized user may create
groups and add group members. Groups can also be formed
by composition or inheritance from other groups.

At storage sites, an automated process periodically
updates the local system’s users and groups by retrieving
the users and groups from the group membership service
and merging them into the local system. Since user
accounts and group membership change infrequently,
periodic synchronization with the group membership
service is sufficient to support the scientific applications
that use the system. This approach also keeps the system
loosely coupled by avoiding communication with the group
membership service for every user operation. In the event
of network partitions or server failures at the group
membership service, storage resources can continue to
authorize data accesses.

E. GridFTP Protocol
The file transfer service supports the GridFTP file

transfer protocol. The GridFTP protocol is a backward-
compatible extension of the legacy RFC959 FTP protocol.
It maintains the same command/response semantics
introduced by RFC959. It also maintains the two-channel
protocol semantics. One channel is for control messaging
(the control channel) such as requesting what files to
transfer, and the other is for streaming the data payload (the
data channel).

Once a client successfully forms a control channel
with a server, it can begin sending commands to the server.
In order to transfer a file, the client must first establish a
data channel. This task involves sending the server a series
of commands on the control channel describing attributes
of the desired data channel. Once these commands are
successfully sent, a client can request a file transfer. At this
point a separate data channel connection is formed using all
of the agreed-upon attributes, and the requested file is sent
across it.

In standard FTP, the data channel can be used to
transfer only a single file. Subsequent transfers must repeat
the data channel setup process. GridFTP modifies this part
of the protocol to allow many files to be transferred across
a single data channel. This enhancement is known as data
channel caching. GridFTP also introduces other
enhancements to improve performance over the standard
FTP mode. For example, parallelism and striping allow
data to be sent over several independent data connections
and reassembled on the destination. These enhancements
require the use of the extended block mode (MODE E) [6]
of GridFTP. In this mode, data channels must go from
sender to receiver.

GridFTP servers are typically configured to listen on
one port for the control channel, and to use a configurable
port range for data channel connections. Firewalls have to
be configured accordingly.

F. Constraints on the System
As mentioned above, the biomedical environment

imposes specialized requirements on a computing
infrastructure. In particular, participating institutions have
differing firewall requirements, ranging from no firewall to
one or more institutional firewalls.

Some sites do not allow any inbound connections to
client machines. Thus, MODE E, which enables advanced
GridFTP performance features such as pipelining,
parallelism, and striping, cannot be leveraged in transfers
on these clients for downloads, because inbound
connections are blocked by firewalls. Data has to be
downloaded using the standard FTP mode, where a separate
TCP data connection has to be formed for each file to be
sent. The result is greatly reduced performance.

IV. EXPERIENCES AND LESSONS LEARNED
We describe our experiences transferring a large

FBIRN study, a data set organized as a directory tree with
many directories (9292) and files (620791) with an overall
size of 69 GB. The dataset is a complete FBIRN study that
includes all subjects and all visits collected during a
traveling subjects study from one site. Typically, after data
collection is complete, most FBIRN sites will download the
entire data set for analysis.

We experimented with transferring this dataset from
UCSD to UCI. In initial tests, only one run out of seven
attempts completed successfully, and that successful run
divided the dataset into 31 sub-datasets and performed 31
data transfers instead of one.

We describe here the problems that prevented these
transfers from completing, and the solutions that we
deployed to correct these problems.

A. The many small files problem
Transferring large directories with many files in

standard FTP mode is inefficient, because for each file a
data channel connection must be set up and torn down.
However, this problem is exacerbated when transfers
involve many small files, related to the TCP TIME_WAIT
status. Upon closing a TCP connection, the connection goes
into a TIME_WAIT state for two times the maximum
segment lifetime (MSL), before finishing the connection
close. This period typically defaults to 1-4 minutes,
depending on operating system.

In the case of transfers of many small files, it may
happen that the limit for the maximum number of opened
connections, defined on the GridFTP server by the TCP
port range, is exceeded. If this happens, then all subsequent
transfer requests hang.

B. The many small files solution
To limit the number of data channel connections used

when transferring many small files and to improve
performance and reliability, we made use of the popen
(pipe open) driver [22] feature of the Globus GridFTP
server Globus Toolkit v5.x. This feature allows users to
execute arbitrary programs on the server and to
communicate with the programs using UNIX pipes from
the GridFTP server to the standard I/O of the executed
programs. It utilizes the same underlying approach that
users of shell scripts employ to compose multiple
executables and pipe standard I/O between them.

We leveraged the popen driver to transfer directories
as a single large archive file. The following steps illustrate
a scenario of a directory download:
1. The client creates a control channel connection to the

server and tells the server that the requested data must
be archived prior to the transfer.

2. If the server has popen support enabled, the server
archives the data with the specified command, and

sends the resulting data as a stream over a single data
channel, as generated by the archive program (e.g., tar).

3. The client receives the archive file over the data
channel and unpacks it as it is received (again using
tar), recreating the directory structure in the client file
system.
The mechanism is the same for an upload scenario.

For the user, the use of the popen driver is opaque.
We note that execution of arbitrary programs as part

of a data transfer opens a potential security risk. The
Globus GridFTP Server can be configured with a whitelist
of programs that can be run. A server only permits
execution of programs on its popen whitelist. If a client
requests a program to be run that is not on the whitelist, the
transfer fails.

Table1: Transfer characteristics of tar-enabled GridFTP

We tested this solution with different dataset sizes (2

GB and 21 GB) and concurrency levels. The 2 GB dataset
contained 5.9K files and corresponds to a single subject
scanned twice on the fMRI scanner. FBIRN sites typically
contribute such datasets during study data collection. The
21 GB dataset contained 64.6K files and is equivalent to 10
subjects over 2 visits. These data sizes are typical of an
FBIRN download for data analysis. Table 1 shows that the
data transfer success rate goes down as the data transfer
time increases. It has been shown in an earlier study [23]
that increased concurrency levels improves GridFTP’s
transfer rate for many small files datasets. Table 1 shows
that as the concurrency level increases, the transfer rate
decreases. It has to be noted that many small files datasets
are tarred up into large archive files and transferred here.
Table 1 shows the transfer rates for concurrent transfer of
multiple 2 GB files and multiple 21 GB files. For many
small files transfers, concurrent transfers improve the
performance by overlapping the latency between file
transfers on one session with the file transfers on one or

more other sessions. Large single file transfers do not have
the issue of latency between file transfers, and when
multiple large files are transferred concurrently, the load on
the server increases, leading to lower transfer rates.

C. The control channel disconnect problem
While transferring a nested directory as a single

archive stream greatly improved performance and
reliability, it led to another problem. As mentioned above,
FTP and thus GridFTP employ a two-channel protocol. To
remain compatible with FTP, GridFTP sends no data over
the control channel after the connection has been
established and while data are being sent. Only after the
data have been transferred is the control channel used to
complete the transfer. Depending on various parameters
like the size of the data to be transferred, network
bandwidth, and the disk speed, a directory transfer can take
a long time. During this time the control channel is idle.

When clients or servers are behind a NAT proxy or a
firewall, connections that are idle for a long time often are
disconnected. This behavior is caused by the connection
tracking mechanisms implemented in proxies and firewalls,
which keep track of all connections that pass through them.
These mechanisms can only keep a finite number of
connections in their memory. A common policy is to keep
the newest and most active connections and to discard old
and inactive connections first.

This behavior caused problems with long-running
transfers, because the control channel connection was
dropped silently. Transfers hung and failed.

Figure 2: Volumes of data moved using our data
management architecture at various FBIRN sites

D. The control channel disconnect solution
To solve this problem, we leverage the TCP keepalive

mechanism to avoid connection dropping. With TCP
keepalive, “probes” are transmitted to network peers at a

configurable time interval, and the probes prevent peers
from closing connections by informing them that the sender
is still “alive”. Linux has built-in support for TCP
keepalive; however, the default settings in most Linux
distributions exceed the time limit used by proxies and
firewalls to close idle TCP connections. Thus, by the time
the kernel sends probes to keep the connection open, the
proxy or firewall may have already closed the connection.
By configuring TCP keepalive on the GridFTP server
machines to probe idle connections at a more frequent
interval, connection dropping was avoided.

When using the methods just described, all tests listed
in Table 1 succeeded, as did the UCSD-to-UCI transfer
described at the beginning of this section. Large volumes of
data are being transferred between FBIRN sites reliably and
efficiently every day using these new capabilities to enable
collaborative imaging studies. Figure 2 shows the volumes
of data moved to/from various FBIRN sites on a day-to-day
basis for a seven-day period (July 23 – 29, 2010).

E. Continuous monitoring
Recall from our requirements discussion (section 2)

that in the FBIRN user community, reliable transfer and
sustained throughput are preferred over high performance.
In non-technical terms, what this means is that the FBIRN
scientists need the data transfer services to behave
predictably: performance (good or bad) should meet
expectations based on past behavior. This requirement led
us to two goals: (1) stabilize the system's behavior, and (2)
measure the system's behavior and publish results to set
reasonable expectations among the users.

Table 2: A sample view of the data from our continuous

monitoring tests

We accomplished both of these goals by establishing

an automated test mechanism. The mechanism performs a
set of tests across all of the FBIRN GridFTP servers on a
continuous basis and records the results so that they may be

reviewed over a period of time to get a sense of the
system's stability and performance. Two types of tests are
performed. A relatively short data transfer between each
pair of data centers is performed frequently (multiple times
per day) in order to ensure that the services are operating
normally. A relatively long data transfer between pairs of
centers is performed infrequently (once per day or every
other day) to measure the performance of the system.

Our data from automated, continuous testing
confirmed what we suspected: that the majority of FBIRN's
servers were stable and performed well. The data allowed
us to easily identify and tend to several servers that were
unreliable (either erratic or consistently failing). In each
case, the issue was caused by a unique combination of
GridFTP software mis-configuration, operating system mis-
configuration, or institutional firewall configuration. The
data also allowed us to provide the FBIRN user community
with a sense of the performance they can expect under
normal circumstances, given the limitations placed on the
system by firewalls, network connections, and hardware
configuration. This has helped to give FBIRN users a sense
that they can rely on the system to behave predictably,
allowing them to focus their attention on scientific
challenges.

A continuous view of data from the monitoring system
for the period 5/21/2010 to 5/29/2010 is shown in table 2.
Site A exhibits consistent failures to several other sites
through 5/27. The site administrator corrected a
configuration problem, and as of 5/28 the errors cleared up.
Site B exhibits consistently successful behavior, so it did
not require any attention. When moving data from Site B,
users at sites D, H, I, and J could expect high performance,
sites F and G could expect moderate performance, and sites
A, C, and E could expect relatively low performance.

V. RELATED WORK
Distributed file systems [24, 25, 26] can be used to

enable access to remote data while maintaining file system
semantics. These systems can replicate data transparently
across sites and provide a level of fault tolerance. Our
system is intended for use in loosely coupled environments
where file system semantics is neither achievable nor
desirable.

Before it adopted the framework described in this
paper, FBIRN used Storage Resource Broker (SRB) [27,
28] for data publication and sharing. SRB uses a logically
centralized catalog (MCAT) to manage data publication,
metadata and replica creation and consistency. In contrast,
our framework supports more relaxed consistency among
replicas and offers distributed file registry services that
eliminate the bottleneck of the centralized catalog approach
of MCAT. An important advantage for FBIRN users is that
our framework maintains data in file systems, allowing
access using conventional clients. FBIRN’s transition from
SRB to the presented system was motivated by

unacceptably slow and unreliable data transfers, bottlenecks
due to the reliance on a centralized metadata catalog, and
lack of access to local data when central services were
offline.

Another approach to management of images and
metadata is the XNAT (eXtensible Neuroimaging Archive
Toolkit) system [29] from Washington University, which
has some analogous capabilities to the present system.
XNAT is positioned as a research imaging archive and
offers support for medical imaging protocols, annotations,
extensible metadata schema, and file storage. Unlike the
system we describe, XNAT does not attempt to federate
storage systems for large collaborative research groups, and
it allows access to images via medical imaging protocols, a
custom web service protocol, and its Web user interface. In
cases where a scientific application wishes to keep data
storage centralized, a system such as XNAT may provide
the preferred approach.

Pipelining [30] and concurrency [22] approaches in
GridFTP improve the transfer performance of datasets with
many small files. In order for pipelining to be effective,
data channel caching in GridFTP is required, which is
available only in MODE E protocol [6] in GridFTP. But
MODE E protocol often cannot be used in this environment
due to the fact that inbound connections are prohibited on
the user (data receiver) end. In the absence of MODE E,
concurrency requires that many ports be opened on the
server (data source), which is also not possible. The tar
functionality in GridFTP (developed for this framework)
improves performance for many small files without the
need for MODE E protocol and/or more open ports at the
server.

VI. SUMMARY
We have developed a data management framework for

distributed biomedical research applications. The
framework was motivated by the need of FBIRN
researchers to securely and reliably transfer data stored at
multiple sites nationwide. To this end, we adopted a loosely
coupled approach comprising a registry catalog, a
credential repository, a group membership service, and a
file transfer service and relying on an underlying Linux file
system for access control. To facilitate the transfer of many
small files, we implemented a tar-enabled feature in
GridFTP. To avoid connection dropping, we use TCP
keepalive to probe idle connections frequently. We also
developed a continuous monitoring framework to measure
the system’s stability and performance. With these new
capabilities, we are reliably and efficiently transferring
large volumes of data among FBIRN sites to enable
collaborative imaging studies that produce and share
millions of files over wide area networks between secure
biomedical research facilities.

ACKNOWLEDGMENT

This work was supported in part by the Biomedical
Informatics Research Network (1 U24 RR025736-01). This
work was supported in part by the Office of Advanced
Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-
06CH11357.

REFERENCES
[1] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman,

S. Tuecke, J. Gawor, S. Meder, F. Siebenlist, "X.509 Proxy
Certificates for Dynamic Delegation," 3rd Annual PKI
R&D Workshop, 2004.

[2] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, "A Security
Architecture for Computational Grids," in 5th ACM
Conference on Computer and Communications Security
Conference, 1998, pp. 83-92.

[3] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J.
Volmer, V. Welch, "A National-Scale Authentication
Infrastructure," IEEE Computer, vol. 33, no. 12, 2000, pp.
60-66, 2000.

[4] Chervenak, A. L., Palavalli, N., Bharathi, S., Kesselman,
C., and Schwartzkopf, R. Performance and Scalability of a
Replica Location Service. 13th IEEE international
Symposium on High Performance Distributed Computing,
2004

[5] A. Chervenak, R. Schuler, M. Ripeanu, M. Amer, S.
Bharathi, I. Foster, A. Iamnitchi, and C. Kesselman, "The
Globus Replica Location Service: Design and Experience,"
IEEE Transactions on Parallel and Distributed Systems,
vol. 20 no. 9, pp. 1260-1272, 2009.

[6] Allcock, W. GridFTP: Protocol Extensions to FTP for the Grid.
Global Grid ForumGFD-R-P.020, 2003.

[7] Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L.,
Kesselman, C., Meder, S., Nefedova, V., Quesnel, D.,
Tuecke, S., and Foster, I. Secure, Efficient Data Transport
and Replica Management for High-Performance Data-
Intensive Computing. 18th IEEE Symposium on Mass
Storage Systems and Technologies, 2001

[8] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu, and I. Foster, “The Globus Striped
GridFTP Framework and Server,” SC’05, ACM Press,
2005

[9] "Function BIRN," http://www.birncommunity.org/current-
users/function-birn/.

[10] Keator DB, Grethe JS, Marcus D, Ozyurt B, Gadde S,
Murphy S, Pieper S, Greve D, Notestine R, Bockholt HJ,
Papadopoulos P; BIRN Function; BIRN Morphometry;
BIRN-Coordinating. A national human neuroimaging
collaboratory enabled by the Biomedical Informatics
Research Network (BIRN). IEEE Trans Inf Technol
Biomed. 2008 Mar;12(2):162-72.

[11] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C.
Beame, M. Eisler, and D. Noveck, "Network File System
(NFS) version 4 Protocol," IETF, RFC 3530, 2003

[12] "Rsync," http://www.samba.org/rsync/, 2009.
[13] T. Ylonen and C. Lonvick, "The Secure Shell (SSH)

Protocol Architecture," IETF, RFC 4251, 2006
[14] "GridFTP URL Schemes," http://www.globus.org/

toolkit/docs/latest-stable/data/gridftp/user/#globus-url-
sync-syntax, 2010

[15] A. Chervenak, R. Schuler, M. Ripeanu, M. Amer, S.
Bharathi, I. Foster, A. Iamnitchi, C. Kesselman, "The
Globus Replica Location Service: Design and Experience,"

IEEE Transactions on Parallel and Distributed Systems, pp.
1260-1272, 2009

[16] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M.
Thompson, "Internet X.509 Public Key Infrastructure (PKI)
Proxy Certificate Profile," IETF, RFC 3820, 2004

[17] J. Basney, M. Humphrey, and V. Welch. "The MyProxy
Online Credential Repository," Software: Practice and
Experience, Volume 35, Issue 9 pages 801-816, 2005

[18] R. Housley, W. Ford, W. Polk, and D. Solo, "Internet
X.509 Public Key Infrastructure Certificate and CRL
Profile," IETF, RFC 2459, 1999

[19] S. Tweedie. "Journaling the Linux ext2fs Filesystem"
Proceedings of the 4th Annual LinuxExpo, Durham, NC,
1998

[20] POSIX 1003.1e draft specification "http://www.suse.de/
~agruen/acl/posix/posix_1003.1e-990310.pdf

[21] "Grid Grouper" http://cagrid.org/display/gridgrouper/ 2009
[22] "Globus XIO popen driver," http://www.mcs.anl.gov/~bres-
 naha/Stretch/
[23] R. Kettimuthu, A. Sim, D. Gunter, B. Allcock, P. Bremer,
 J. Bresnahan, A. Cherry, L. Childers, E. Dart, I. Foster, K.
 Harms, J. Hick, J. Lee, M. Link, J. Long, K. Miller, V.
 Natarajan, V. Pascucci, K. Raffenetti, D. Ressman, D.
 Williams, L. Wilson, L. Winkler, "Lessons learned from
 moving Earth System Grid data sets over a 20 Gbps wide-
 area network", 19th ACM International Symposium on
 High Performance Distributed Computing (HPDC), 2010
[24] Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A.,
 Satyanarayanan, M., Sidebotham, R.N. and West, M.J.
 Scale and Performance in a Distributed File System.ACM
 Transactions on Computer Systems, 6 (1). 51-81.
 1988.
[25] M. Satyanarayanan, J. Kistler, E. Siegel, "Coda: A Resilient

Distributed File System," IEEE Workshop on Workstation
Operating Systems, Cambridge, MA, 1987

[26] S. Weil, S. Brandt, E. Miller, D. Long, C. Maltzahn, Ceph:
A Scalable, High-Performance Distributed File System, 7th
Conference on Operating Systems Design and
Implementation (OSDI), November 2006.

[27] A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G.
Kremenek, A. Jagatheesan, C. Cowart, B. Zhu, S. Y. Chen,
and R. Olschanowsky, "Storage Resource Broker-
Managing Distributed Data in a Grid," Computer Society of
India Journal, Special Issue on SAN, vol. 33(4), pp. 42-54,
2003.

[28] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The SDSC
storage resource broker," in 1998 Conference of the Centre
for Advanced Studies on Collaborative Research
(CASCON'98), Toronto, Ontario, Canada, 1998, p. 5.

[29] "XNAT," http://www.xnat.org/.
[30] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I.

Foster, "GridFTP Pipelining," in Teragrid 2007 Conference
Madison, WI, 2007.

 The submitted manuscript has been created in part by

UChicago Argonne, LLC. Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

